Diagnosticar el desempeño en SQL Azure Database


Cuando se tiene un base de datos en Azure, muchas veces es necesario tomar algunas estadisticas del uso de la base de datos para determinar si tenemos que aumentar el nivel de servicio de Azure, o sea aumentar los DTU asignados a nuestra base de datos, a continuación les muestro algunas consultas importantes para ver cual es el desempeño actual y determinar si tenemos que hacer cambios. Los consultas son una adaptación de los artículos de desempeño del MSDN.

-- SQL MAS INTENSIVOS
SELECT highest_cpu_queries.plan_handle, highest_cpu_queries.total_worker_time, q.dbid,
q.objectid, q.number, q.encrypted, q.[text]
FROM
(SELECT TOP 10 qs.plan_handle, qs.total_worker_time
FROM sys.dm_exec_query_stats qs
ORDER BY qs.total_worker_time desc) AS highest_cpu_queries
CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS q
ORDER BY highest_cpu_queries.total_worker_time desc

--USO DE CPU

SELECT TOP 10 query_stats.query_hash AS 'QueryHash',
SUM(query_stats.total_worker_time) / SUM(query_stats.execution_count) AS 'AvgCPUTime',
MIN(query_stats.statement_text) AS 'StatementText'
FROM
(SELECT QS.*,
SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,
((CASE statement_end_offset
WHEN -1 THEN DATALENGTH(st.text)
ELSE QS.statement_end_offset END
- QS.statement_start_offset)/2) + 1) AS statement_text
FROM sys.dm_exec_query_stats AS QS
CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) as ST) as query_stats
GROUP BY query_stats.query_hash
ORDER BY 2 DESC

-- TIEMPO EJECUCION CONSULTAS

SELECT TOP 10 r.session_id, r.plan_handle, r.sql_handle, r.request_id, r.start_time, r.status,
r.command, r.database_id, r.user_id, r.wait_type, r.wait_time, r.last_wait_type,
r.wait_resource, r.total_elapsed_time, r.cpu_time, r.transaction_isolation_level, r.row_count, st.text
FROM sys.dm_exec_requests r
CROSS APPLY sys.dm_exec_sql_text(r.sql_handle) as st
WHERE r.blocking_session_id = 0
and r.session_id in
(SELECT distinct(blocking_session_id) FROM sys.dm_exec_requests)
GROUP BY r.session_id, r.plan_handle, r.sql_handle, r.request_id, r.start_time, r.status,
r.command, r.database_id, r.user_id, r.wait_type, r.wait_time, r.last_wait_type,
r.wait_resource, r.total_elapsed_time, r.cpu_time, r.transaction_isolation_level,r.row_count, st.text
ORDER BY r.total_elapsed_time desc


-- ESCRITURAS LOGICAS

SELECT TOP 10 SUBSTRING(qt.TEXT, (qs.statement_start_offset/2)+1,
((CASE qs.statement_end_offset
WHEN -1 THEN DATALENGTH(qt.TEXT)
ELSE qs.statement_end_offset
END - qs.statement_start_offset)/2)+1) SQLStatement,
qs.execution_count,
qs.total_logical_reads, qs.last_logical_reads,
qs.total_logical_writes, qs.last_logical_writes,
qs.total_worker_time,
qs.last_worker_time,
qs.total_elapsed_time/1000000 total_elapsed_time_in_S,
qs.last_elapsed_time/1000000 last_elapsed_time_in_S,
qs.last_execution_time,
qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY qs.total_logical_writes DESC

-- LECTURAS

SELECT TOP 10 SUBSTRING(qt.TEXT, (qs.statement_start_offset/2)+1,
((CASE qs.statement_end_offset
WHEN -1 THEN DATALENGTH(qt.TEXT)
ELSE qs.statement_end_offset
END - qs.statement_start_offset)/2)+1) SQLStatement,
qs.execution_count,
qs.total_logical_reads, qs.last_logical_reads,
qs.total_logical_writes, qs.last_logical_writes,
qs.total_worker_time,
qs.last_worker_time,
qs.total_elapsed_time/1000000 total_elapsed_time_in_S,
qs.last_elapsed_time/1000000 last_elapsed_time_in_S,
qs.last_execution_time,
qp.query_plan
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY qs.total_logical_reads DESC

-- TIEMPO EJECUCION

SELECT TOP 10
qs.total_elapsed_time / qs.execution_count / 1000000.0 AS average_seconds,
qs.total_elapsed_time / 1000000.0 AS total_seconds,
qs.execution_count,
SUBSTRING (qt.text,qs.statement_start_offset/2,
(CASE WHEN qs.statement_end_offset = -1
THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
ELSE
qs.statement_end_offset
END
- qs.statement_start_offset)/2) AS individual_query,
o.name AS object_name,
DB_NAME(qt.dbid) AS database_name
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
LEFT OUTER JOIN sys.objects o ON qt.objectid = o.object_id
where qt.dbid = DB_ID()
ORDER BY average_seconds DESC;

-- MAS I/O

SELECT TOP 10
(total_logical_reads + total_logical_writes) / qs.execution_count AS average_IO,
(total_logical_reads + total_logical_writes) AS total_IO,
qs.execution_count AS execution_count,
SUBSTRING (qt.text,qs.statement_start_offset/2,
(CASE WHEN qs.statement_end_offset = -1
THEN LEN(CONVERT(NVARCHAR(MAX), qt.text)) * 2
ELSE qs.statement_end_offset END - qs.statement_start_offset)/2) AS indivudual_query,
o.name AS object_name,
DB_NAME(qt.dbid) AS database_name
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) as qt
LEFT OUTER JOIN sys.objects o ON qt.objectid = o.object_id
where qt.dbid = DB_ID()
ORDER BY average_IO DESC;

Comments

Popular posts from this blog

Cómo identificar consultas más pesadas en SQL Server

Permitiendo la administración de los jobs a usuarios que no son System Administrators en SQL Server Agent 2005 o superior

El análisis predictivo y Machine Learning